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Abstract

In this paper, the conventional level set methods are extended as an effective approach for shape and topology optimi-
zation by the introduction of the radial basis functions (RBFs). The RBF multiquadric splines are used to construct the
implicit level set function with a high level of accuracy and smoothness and to discretize the original initial value problem
into an interpolation problem. The motion of the dynamic interfaces is thus governed by a system of coupled ordinary
differential equations (ODEs) and a relatively smooth evolution can be maintained without reinitialization. A practical
implementation of this method is further developed for solving a class of energy-based optimization problems, in which
approximate solution to the original Hamilton–Jacobi equation may be justified and nucleation of new holes inside the
material domain is allowed for. Furthermore, the severe constraints on the temporal and spatial discretizations can be
relaxed, leading to a rapid convergence to the final design insensitive to initial guesses. The normal velocities are chosen
to perform steepest gradient-based optimization by using shape sensitivity analysis and a bi-sectioning algorithm. A phys-
ically meaningful and efficient extension velocity method is also presented. The proposed method is implemented in the
framework of minimum compliance design and its efficiency over the existing methods is highlighted. Numerical examples
show its accuracy, convergence speed and insensitivity to initial designs in shape and topology optimization of two-dimen-
sional (2D) problems that have been extensively investigated in the literature.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The level set method first introduced and devised by Osher and Sethian [1] in 1988 is a simple and versatile
method for computing and analyzing the motion of an interface in two or three dimensions and following the
evolution of interfaces. Since these interfaces may easily develop sharp corners, break apart, and merge
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together in a robust and stable way, the level set method has a wide range of successful applications, including
problems in fluid mechanics, combustion, solids modeling, computer animation, material science and image
processing over the years [2–6].

Recently, the level set methods have been applied to structural shape and topology optimization problems as
an emerging and promising family of methods based on the moving free boundaries [7–10]. Sethian and Wieg-
mann [7] are among the first researchers to extend the level set method of Osher and Sethian in [1] to capture the
free boundary of a structure on a fixed Eulerian mesh. The Von Mises equivalent stress, rather than the more
suitable classical shape sensitivity analysis, was employed to improve the structural rigidity within the context
of two-dimensional linear elasticity using the immersed interface method. Osher and Santosa [11] investigated a
two-phase optimization of a membrane modeled by a linear scalar partial differential equation. The free bound-
ary was defined as the interface between two constituents occupying a given design domain. The level set
method was combined with the shape sensitivity analysis framework, but without the context of linear or non-
linear elasticity. Wang et al. [9] established the speed (or velocity) vector in terms of the shape of the boundary
and the variational sensitivity as a physically meaningful link between the general structural topology optimi-
zation process and the powerful level set methods. It was suggested that using the level set methods for struc-
tural topology optimization has the promising potentials in flexibility of handling topological changes, fidelity
of boundary representation and degree of automation. The level set methods were further developed as a nat-
ural setting to combine the rigorous shape variations into the conventional structural topology optimization
process in [10]. Allaire et al. [8] also proposed an implementation of the level-set methods for structural topol-
ogy optimization where the front velocity during the optimization process was derived from the classical shape
sensitivity analysis by using an adjoint problem and the front propagation was performed by solving the Ham-
ilton–Jacobi equation. Furthermore, drastic topology changes during the structural optimization process were
allowed for. In a multi-material design domain, the conventional level set methods have been further developed
in [12] as a ‘‘color level set’’ method to address the problem of structural shape and topology optimization. An
implicit function vector was used to represent different material phases more efficiently. It was demonstrated
that the proposed method can automatically avoid the problem of overlap between material phases of a
conventional partitioning approach. In [13], the conventional level set methods were further extended to a level
set-based variational approach for the optimal shape and topology design of heterogeneous objects using a
multi-phase level set model in [14] for digital image processing, in which the promising features such as strong
regularity in the problem formulation and inherent capabilities of geometric and materials modeling have been
obtained and illustrated. More recently, Xia et al. [15] presented a semi-Lagrangian method for level-set based
shape and topology optimization. The level set Hamilton–Jacobi equation was solved by an efficient and uncon-
ditionally stable semi-Lagrange scheme and it was reported that a much larger time step size could be used to
save the computational time significantly. Wang and Wang [16] explored the use of radial basis functions for the
level set-based structural topology optimization. Multiquadric (MQ) splines were used to define the implicit
function and some appealing results illustrated. However, a thorough investigation into the level set-based
shape and topology optimization using the radial basis functions was not performed. Moreover, only the
relatively simple unconstrained topology optimization with a fixed Lagrange multiplier, rather than the prac-
tical constrained shape and topology optimization with a variational Lagrange multiplier, was implemented.

The advantages of the level set methods as capturing methods based on embedding the interface as the zero-
level set of a higher-dimensional function are well known. Generally, the level set methods provide a smooth
geometrical description of the interface and require a relatively simple implementation and their extension to
three-dimensional (3D) problems is straightforward [17,18]. In practice, in applying a level set model for struc-
tural shape and topology optimization, it should be noted that the implementation of the conventional discrete
level set methods requires appropriate choice of the upwind schemes, extension velocities and reinitialization
algorithms [16], where complicated PDE (partial differential equation) solving procedures are usually involved
[2–4,9,12,19]. In general, it is well known that the PDEs are rarely easy to implement [20], though some robust
and accurate methods such as the upwind schemes [1,21,22], fast marching methods [2] and fast local level set
methods [17,18] have been available. Particularly, in solving the structural shape and topology optimization
problems, the conventional level set methods [9,11,12,19,23] is known to be slow to reach the convergence
and easy to get stuck at a local minimum [24]. Furthermore, there is no nucleation mechanism in the conven-
tional level set methods, leading to the final design largely dependent on the initial guesses [2,6,16,25,26].
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Although some attempts have been made to incorporate both the topological derivatives and the shape deriv-
atives into a level set model to resolve this problem [25,26], it is shown to be difficult to switch between the
topological derivatives and the shape derivatives [25,27,28]. Hence, the numerical considerations of discrete
computation would severely limit the primary advantages of the conventional level set methods for structural
shape and topology optimization.

The objective of the present study is to develop an alternative level set method with improved efficiency for
structural shape and topology optimization by introducing the popular radial basis functions [29]. The implicit
level set function is approximated by using the RBF implicit modeling with MQ splines [30]. The original
Hamilton–Jacobi PDE is discretized into a mathematically more convenient system of ODEs and the original
time dependent initial value problem becomes an interpolation problem for the initial values of the generalized
expansion coefficients, which can be solved by a collocation formulation of the method of lines [31]. Due to the
use of MQ RBFs with global support [30], a relatively smooth level set evolution can be maintained without
reinitialization. A practical implementation of the present method is further developed, in which inaccurate
solution to the original Hamilton–Jacobi PDE may be justified and nucleation of new holes inside the material
domain is allowed for. As a result, the constraints on the temporal and spatial discretizations can be relaxed
and the direct consequence of time stability problem can be circumvented and a rapid convergence to the final
design insensitive to initial guesses becomes possible. The normal velocities are chosen to perform the steepest
gradient-based shape and topology optimization by using shape sensitivity analysis [16,19,26] and a bi-section-
ing algorithm [32]. An ‘‘ersatz material’’ approach [19] is used to perform the finite element analysis to obtain
the strain energy density field and a bi-sectioning algorithm is proposed to find the Lagrange multiplier to
ensure that the optimization process is performed in the feasible domain. The extension velocities are obtained
by using the strain energy density field in the whole design domain and a linear smoothing filter [33] is used to
smooth out the discontinuities at the free boundary. Numerical examples are chosen to illustrate the success of
the present method in accuracy, convergence speed and insensitivity to initial designs in shape and topology
optimization of 2D problems that has been extensively studied in the literature [9,16,19,23,25,34–36].

In the following, we first present an overview on the conventional level set methods. We then introduce the
RBF implicit modeling for the implicit level set function. A RBF expansion coefficients-based governing equa-
tion of motion of the moving free boundary is then presented, followed by an application to classical shape
and topology optimization. Numerical examples are discussed next with a comparative study on the efficiency
and accuracy of the present method. The conclusions are finally given.

2. Conventional level set methods

Level set methods first devised by Osher and Sethian [1] have become popular recently for tracking, mod-
eling and simulating the motion of dynamic interfaces (moving free boundaries) in fluid mechanics, combus-
tion, computer animation, material science, crack propagation and image processing [2,4]. The interface (or
front) is closed, nonintersecting and Lipschitz-continuous and represented implicitly through a Lipschitz-con-
tinuous level set function U(x), and the interface itself is the zero isosurface or zero level set fx 2 Rd jUðxÞ ¼ 0g
(d = 2 or 3). The embedding U(x) of (d + 1) dimension can be specified in any specific form, such as a regular
sampling on a rectilinear grid. Furthermore, U(x) can be used to define the inside and outside regions of the
interface as follows:
UðxÞ ¼ 0 8x 2 oX \ D;

UðxÞ < 0 8x 2 X n oX;

UðxÞ > 0 8x 2 ðD n XÞ;
ð1Þ
where D � Rd is a fixed design domain in which all admissible shapes X (a smooth bounded open set) are in-
cluded, i.e. X � D. The local unit normal to the surface n can be given by
n ¼ rU
jrUj ðwhere jrUj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rU � rU
p

Þ: ð2Þ
In the level set methods, it is convenient to use the Heaviside step function H and the Dirac delta function d
defined [9,37] as
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HðUÞ ¼
1; U P 0;

0; U < 0;

�
dðUÞ ¼ H 0ðUÞ; dðxÞ ¼ rH � rU

jrUj ¼ dðUÞjrUj: ð3Þ
Then, the interior and the boundary C of a shape can be described in terms of the level set function U(x),
respectively, as
X ¼ fx : Hð�UðxÞÞ ¼ 1g; C ¼ fx : dðUðxÞÞ > 0g: ð4Þ

Furthermore, in the level set formulation, the volume integral of a function F(x) is defined as
Z

D

F ðxÞHð�UÞ dX:
If F(x) ” 1, then this integral yields the volume V(U) as follows:
V ðUÞ ¼
Z

D

Hð�UÞ dX: ð5Þ
To let the level set function dynamically change in time, a continuous velocity field v, which is a function of
position x, is introduced and the evolution can be described as the following Cauchy problem [6]:
oU
ot
þ v � rU ¼ 0; Uðx; 0Þ ¼ U0ðxÞ; ð6Þ
where U0(x) embeds the initial position of the interface and t the artificial time. According to Eq. (2), (6) can be
re-written using the normal velocity vn as
oU
ot
þ vnjrUj ¼ 0; Uðx; 0Þ ¼ U0ðxÞ; ð7Þ
where
vn ¼ v � rU
jrUj : ð8Þ
In the conventional level set methods, the Hamilton–Jacobi PDE (7) is solved to evolve the interface using a
capturing Eulerian approach. The solving procedure requires appropriate choice of the upwind schemes, reini-
tialization algorithms and extension velocity methods, which may require excessive amount of computational
efforts and thus limit the utility of the level set methods. Moreover, the Hamilton–Jacobi PDE (7) obeys a
maximum principle [4] and thus the nucleation of holes inside the material domain is prohibited. Hence,
the final design becomes strongly dependent on the initial guess which decides the maximum number of holes
allowed [2,9,19,26].

In the present study, an extended level set method for shape and topology optimization is proposed based on
a modification of the conventional level set methods. The benefits of handling topological changes of the impli-
cit representation of a level set model are retained while the implicit level set function is to be approximated by
an implicit modeling method based on radial basis functions to achieve the global smoothness. Parametrization
of the RBF implicit model discretizes the Hamilton–Jacobi PDE into a system of mathematically more conve-
nient coupled ODEs. Moreover, reinitialization becomes unnecessary because of the global approximation. By
imposing an approximation method in solving the coupled ODEs, the objective function value can still be
decreased while the constraint conditions satisfied. The limits on the total number of knots and the timestep
size can be relaxed and the computational efficiency can be improved. More importantly, the nucleation of
new holes is thus allowed for. This proposed method is to be discussed in detail in the following sections.
3. Extended level set method using an implicit RBF modeling

3.1. RBF implicit modeling for the level set function

To model and reconstruct the entire admissible design with a single level set function which is globally con-
tinuous and differentiable, an implicit modeling method based on RBFs is presented. RBFs are popular for
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interpolating scattered data to produce smooth surface/boundary as the associated system of non-linear equa-
tions is guaranteed to be invertible under mild conditions on the locations of the data points [38]. The positive
features of radial basis functions such as the unique solvability of the interpolation problem, the computation
of interpolants, their smoothness and convergence make them very attractive in the level set methods. In the
present study, RBF implicit modeling is to be presented as an effective representation method to reconstruct
the moving free boundary via the implicit level set function.

Radial basis functions are radially-symmetric functions centered at a particular point [39], or knot, which
can be expressed as follows:
uiðxÞ ¼ uðkx� xikÞ; xi 2 D; ð9Þ

where iÆi denotes the Euclidean norm on Rd [30], and xi the position of the knot. Only a single fixed function
form u : Rþ ! R with u(0) P 0 is used as the basis to form a family of independent functions. There is a large
class of possible radial basis functions. Commonly used RBFs include thin-plate spline, polyharmonic splines,
Sobolev splines, Gaussians, multiquadrics and compactly supported RBFs [30,31]. Among them, the multi-
quadric (MQ) spline appears to be the overall best performing RBF [30], which can be written as
uiðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ c2

i

q
; ð10Þ
where ci is the free shape parameter which is commonly assumed to be a constant for all i in most applications.
It should be noted that ui(x) in Eq. (10) is continuously differentiable and thus MQ splines are infinitely
smooth splines [31].

In the present RBF implicit modeling, the MQ spline is used to interpolate the scalar implicit level set func-
tion U(x) with N knots by using N MQs centered at these knots. The resulting RBF interpolant of the implicit
function can be written as
UðxÞ ¼
XN

i¼1

aiuiðxÞ þ pðxÞ; ð11Þ
where ai is the weight, or expansion coefficient, of the radial basis function positioned at the ith knot, p(x) a
first-degree polynomial to account for the linear and constant portions of U(x) and to ensure positive definite-
ness of the solution [39]. For the three-dimensional (3D) modeling problems, p(x) can be given by
pðxÞ ¼ p0 þ p1xþ p2y þ p3z ð12Þ

in which p0, p1, p2 and p3 are the coefficients of the polynomial p(x). Because of the introduction of this poly-
nomial, to ensure a unique solution, the RBF interpolant of U(x) in Eq. (11) must be subject to the following
side constraints [31,38–40]:
XN

i¼1

ai ¼ 0;
XN

i¼1

aixi ¼ 0;
XN

i¼1

aiyi ¼ 0;
XN

i¼1

aizi ¼ 0: ð13Þ
If the interpolation data values f1; . . . ; fN 2 R at knot locations x1; . . . ; xN 2 D � Rd are given, the RBF inter-
polant of U(x) in Eq. (11) can be obtained by solving the system of N + 4 linear equations for N + 4 unknown
generalized expansion coefficients:
UðxiÞ ¼ fi; i ¼ 1; . . . ;N ;XN

i¼1

ai ¼ 0;
XN

i¼1

aixi ¼ 0;
XN

i¼1

aiyi ¼ 0;
XN

i¼1

aizi ¼ 0
ð14Þ
which can be re-written in matrix form as
Ha ¼ f; ð15Þ

where
H ¼
A P

PT 0

� �
2 RðNþ4Þ�ðNþ4Þ; ð16Þ
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A ¼

u1ðx1Þ � � � uNðx1Þ
..
. . .

. ..
.

u1ðxNÞ � � � uNðxNÞ

2664
3775 2 RN�N ; ð17Þ

P ¼

1 x1 y1 z1

..

. ..
. ..

. ..
.

1 xN yN zN

2664
3775 2 RN�4; ð18Þ

a ¼ a1 � � � aN p0 p1 p2 p3½ �T 2 RNþ4; ð19Þ
f ¼ f1 � � � fN 0 0 0 0½ �T 2 RNþ4: ð20Þ
Since the multiquadric collocation matrix H is theoretically invertible [29,31,41], the generalized expansion
coefficients a can be simply given by
a ¼ H�1f: ð21Þ
After obtaining the generalized expansion coefficients a, the resulting RBF interpolant of the implicit function
in Eq. (11) can be re-written compactly as
UðxÞ ¼ /TðxÞa; ð22Þ
where
/ðxÞ ¼ u1ðxÞ � � � uNðxÞ 1 x y z½ �T 2 RðNþ4Þ�1: ð23Þ
It should be noted that the system of the form (15)–(20) is a special case of the more general saddle point sys-
tems (or KKT systems in the optimization literature) [42]. Hence, the solution methods reviewed in detail in
[42] for generalized saddle point problems are applicable to efficiently solve this system, such as the direct solv-
ers, stationary iterative methods, Krylov subspace solvers, preconditioners, multigrid and Schwarz-type
algorithms.

3.2. Governing equation of motion

Since the Hamilton–Jacobi PDE (7) is time dependent, in the present RBF implicit modeling for the level
set function U(x), it is further assumed that all the knots are fixed in space and the space and time are sepa-
rable and the time dependence of the implicit function U is due to the generalized expansion coefficients a of
the RBF interpolant in Eq. (19). With these assumptions, the RBF interpolant of the implicit function in Eq.
(22) becomes time dependent as
U ¼ Uðx; tÞ ¼ /TðxÞaðtÞ: ð24Þ

Substituting Eq. (24) into the Hamilton–Jacobi PDE defined in (7) yields
/T da

dt
þ vnjðr/ÞTaj ¼ 0; ð25Þ
where
jðr/ÞTaj ¼ o/T

ox
a

� �2

þ o/T

oy
a

� �2

þ o/T

oz
a

� �2
" #1=2

; ð26Þ

o/

ox
¼ ou1

ox � � � ouN

ox 0 1 0 0
h iT

2 RðNþ4Þ�1; ð27Þ

o/

oy
¼ ou1

oy � � � ouN

oy 0 0 1 0
h iT

2 RðNþ4Þ�1; ð28Þ

o/

oz
¼ ou1

oz � � � ouN

oz 0 0 0 1
h iT

2 RðNþ4Þ�1; ð29Þ
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oui

ox
¼ x� xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xiÞ2 þ ðy � yiÞ
2 þ ðz� ziÞ2 þ c2

i

q ; i ¼ 1; . . . ;N ; ð30Þ

oui

oy
¼ y � yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xiÞ2 þ ðy � yiÞ
2 þ ðz� ziÞ2 þ c2

i

q ; i ¼ 1; . . . ;N ; ð31Þ

oui

oz
¼ z� ziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xiÞ2 þ ðy � yiÞ
2 þ ðz� ziÞ2 þ c2

i

q ; i ¼ 1; . . . ;N : ð32Þ
In Eq. (25), the RBF expansion coefficients are explicitly time dependent and all the time dependence is due to
the expansion coefficients. At the initial time, all the time dependent variables should be specified over the en-
tire domain. This initial value problem can be considered equivalent to an interpolation problem since the
expansion coefficients at the initial time are found as a solution of the interpolation problem, as shown in
Eq. (15). Hence, the preliminary starting point of the use of RBFs to solve PDEs is the interpolation problem
that is equivalent to solving the initial value problem. The original time-dependent initial value problem
defined by the Hamilton–Jacobi PDE (7) in the conventional level set methods is thus converted into a
time-dependent interpolation problem for the initial values of the generalized expansion coefficients a and
the motion of the free boundary, or the propagation of the front, is now governed by the time dependent
coupled equation (25).

To time advance the initial values of a in the governing equation of motion (25), a collocation formulation
of the method of lines is presented because of its inherent simplicity. The governing equation of motion of the
front equation (25) is extended to the whole design domain D and the normal velocities vn at the front are thus
replaced by the extension velocities ve

n in D. Based on the principle of collocation method, all nodes of the
spatial discretization of the extended ODE (25) are located sequentially at the fixed knots of the RBF inter-
polation for the implicit function U(x). Furthermore, in the present implementation, for the purpose of sim-
plicity, all the nodes of a fixed mesh for structural analysis are taken as the fixed knots of RBF interpolation,
though not necessary. However, using this collocation method cannot guarantee the positive definiteness of
the resulting system due to the conditional positive definiteness of the multiquadrics [31,43]. Similar to solving
the interpolation problem using RBFs in Eq. (14), side constraints must be introduced to guarantee that the
generalized coefficients a can be solved. For this time-dependent interpolation problem, the corresponding side
constraints are proposed as follows:
XN

i¼1

_aiðtÞ ¼ 0;
XN

i¼1

_aiðtÞxi ¼ 0;
XN

i¼1

_aiðtÞyi ¼ 0;
XN

i¼1

_aiðtÞzi ¼ 0: ð33Þ
Using the present collocation method for the N knots and the four side constraints in (33), a set of resulting
ODEs can be compactly written as follows:
H
da

dt
þ BðaÞ ¼ 0; ð34Þ
where
BðaÞ ¼

ve
nðx1Þjðr/Tðx1ÞÞaj

..

.

ve
nðxNÞjðr/TðxNÞÞaj

0

0

0

0

26666666666664

37777777777775
2 RðNþ4Þ�1: ð35Þ
It should be noted that the same collocation matrix H as Eq. (15) has been derived because of the proposed side
constraints in (33). Since the collocation matrix H is theoretically invertible as aforementioned, the resulting
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ODE system in (34) is solvable and nonsingular. Eq. (34) can be regarded as a collocation formulation of the
general method of lines [44], in which a time dependent PDE problem is reduced to a simpler time dependent
ODE problem by discretization. The method of lines has a solid mathematical foundation and the convergence
of the solution of the converted ODE problem to the solution of the original PDE problem has been rigorously
proven [44].

It is well known that in many situations the level set function may develop flat and/or steep gradients lead-
ing to problems in numerical approximations using the local approximation methods such as the upwind
schemes [6,17]. To cope with these problems, a reinitialization procedure is periodically performed to resurrect
the behavior of the level set function in the neighborhood of the front, while keeping the zero location
unchanged. In the present global approximation method using RBF implicit modeling for the level set func-
tion, the occurrence of flat level set function in the neighborhood of the front is virtually prevented due to the
explicit parametrization of the RBF implicit model. The parametrization with global support makes the level
set function and its gradients at any point dependent on each knot value in the whole design domain, rather
than the neighboring knot values only, different from the upwind schemes [4]. According to Eqs. (26)–(32),
during the course of evolution it can be generally maintained that
jrUj ¼ jðr/ÞTaj 6¼ 0 ð36Þ

for most points in the neighborhood of the front U = /Ta = 0 and thus a flat surface is unlikely to be devel-
oped. Hence, a smooth level set evolution can thus be achieved. In our numerical examples, it has never been
experienced that j$Uj = 0 when U = 0. It should be noted that in the literature [45] using non-local functionals
was reported to obtain almost smooth level set evolution through a regularization method without reinitial-
ization, though radial basis functions were not considered. Furthermore, since the gradients can be readily
obtained from (26) to (32), steep gradients will not lead to the apparent numerical approximation problems
existing in the local approximation methods such as the upwind schemes [4]. Moreover, the magnitude of
the gradients can be scaled down since the generalized expansion coefficients a can be normalized without
changing the zero location U(x) = 0, according to the present RBF approximation (22) for the implicit level
set function. Hence, reinitialization becomes unnecessary and can be eliminated in the numerical analysis pro-
cedure in solving the coupled ODEs (34). It should be noted that in the recent literature, many level set meth-
ods without reinitialization have been proposed, as seen in [24,45–48]. In the present study, the global basis
functions are used to prevent the concurrence of flat level sets and to maintain the behavior of the level set
function at the front without reinitialization.

The set of coupled non-linear ODEs of Eq. (34) can be solved by several well-established ODE solvers such
as the first-order forward Euler’s method and higher-order Runge–Kutta, Runge–Kutta–Fehlberg, Adams–
Bashforth, or Adams–Moulton methods [49]. In the present study, only the first-order forward Euler’s method
is used since it is the simplest solution algorithm for ODE initial condition problems and often used for com-
parison with more accurate algorithms, which are more complex and tedious to implement. Using Euler’s
method, an approximate solution to Eq. (34) can be given by
aðtnþ1Þ ¼ aðtnÞ � sH�1BðaðtnÞÞ; ð37Þ

where s is the timestep size. Because of the fixed location of the RBF knots, the multiquadric collocation matrix
H is time independent and storing the initial value of its inverse matrix only will save the computational cost.
The use of the time independent collocation matrix and its inverse matrix may still be a drawback of the present
method in computational efficiency due to the problem size, compared with the popular upwind schemes [4].
However, this drawback can be significantly alleviated when the present extended level set method is applied
to shape and topology optimization problems. Usually, the timestep size should be sufficiently small to achieve
the numerical stability due to the Courant–Friedrichs–Lewy (CFL) condition for stability in the von Neumann
sense [4]. Furthermore, the truncation error due to the spatial discretization of the implicit RBF modeling
should be kept small enough. A small timestep size together with a large number of RBF knots can be used
to achieve an accurate solution to the original Hamilton–Jacobi PDE, however, the computational time will
be increased significantly and the computational efficiency may pose a severe problem. To improve the compu-
tational efficiency, in the present extended level set method for shape and topology optimization, only an
approximate solution to the Hamilton–Jacobi PDE is pursued such that the constraints on the timestep size
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s and the total number of RBF knots N can be significantly relaxed and nucleation of new holes can be allowed
for. A detailed discussion is to be given in the following section.

3.3. Practical implementation of the extended level set method

As noted by many researchers [6,48,50–52], a wide range of practical problems can be expressed in varia-
tional form as follows:
Minimize
U

Jðu;UÞ ¼
Z

D
F ðuÞHð�UÞ dX

subject to : Gðu;UÞ ¼
Z

D
gðuÞHð�UÞ dX ¼ 0;

ð38Þ
where J is an energy functional, F the energy density, u a field variable, G a constraint functional, g a con-
straint function. It is well known that the level set methods can be used to solve this kind of optimization
problems provided that both J and G are Gâteaux-differentiable functionals and the corresponding methods
are called variational level set methods [6,48,50–52]. Based on the normal velocities derived from the steepest
descent method and the shape derivatives, the moving free boundary can be captured by solving the Hamil-
ton–Jacobi equations (6) or (7) and an optimal solution to (38) can be finally obtained. Ideally, if both J and
G are convex, this optimal solution is also the global minimum and independent of the initial guess [53]. How-
ever, in most cases using the variational level set methods [6,16,23,48,50–52], neither J nor G can be convex.
Hence, the final optimal solution obtained by the conventional gradient-based variational level set methods
largely depends on the initial guess [19]. This dependency may even make the optimization solution procedure
fail to converge if a bad guess is chosen [24]. It was observed by many researchers [9,19,25,26] that each opti-
mal solution cannot have more holes than the geometry of the initial guess due to the lack of a nucleation
mechanism in the conventional level set methods [6]. Hence, the global optimum can never be reached if it
has more holes than the initial geometry. One common approach in getting around this problem is to initially
seed many small holes that are densely distributed throughout the given design domain and let them gradually
merge and evolve [6]. However, this approach may become less practical since the gradient-based local search
method may easily get stuck at a local minimum [53–55] considering the fact that the original optimization
problem (38) usually has one global optimum and many local minima. Due to the theoretical complexity
and computational cost in locating the global optimum, for many real world problems, the global optimum
is only of theoretical importance. It is practically more useful to derive a local optimal solution less sensitive
to the initial guess since the local minima problem can be relieved without increasing the computational cost
significantly.

In the literature, many efforts have been made to find a local optimal solution to (38) less sensitive to the
initial guess. In the work of Chan and Vese [56], particular choice of a delta function that has non-compact
support was proposed to replace j$Uj in the Hamilton–Jacobi equation (7). It was reported that new inte-
rior contour my occur due to this special handling on the Hamilton–Jacobi PDE and thus the final geom-
etry will become less dependent of the initial configuration. However, more careful study is needed to
compare the degree of regularization with the possibility of the emergence of new interior contour since
the continuity of the level set function is discarded [6]. In the work of Burger et al. [26], a forcing term
dependent on the topological derivative was added to modify the Hamilton–Jacobi equation (7). Although
the limited capability of the standard shape derivative based level set method to generate holes can be
improved due to this modification, it is shown to be difficult to switch between the topological derivatives
and the shape derivatives. In the work of Allaire et al. [25], the standard level set method based on the clas-
sical shape derivative was coupled with the topological gradient method for introducing new holes in the
optimization process. It was reported that this coupling can escape from local minima in a given topological
class of shapes. However, it was also shown that incorporating the topological derivatives is quite difficult in
numerical practice since a hole can not be smaller than a single mesh cell and thus cannot be infinitesimally
small as defined by the topological derivatives. It should also be noted that in Haber’s recent work [24] the
level set method was used to represent the shape, but the Hamilton–Jacobi equations were avoided all
together and the shape optimization problem was treated as a numerical optimization problem only using



404 S.Y. Wang et al. / Journal of Computational Physics 221 (2007) 395–421
a reduced Hessian Sequential Quadratic Programming (SQP) method combined with multilevel continuation
techniques. It was reported that the optimization problem can be solved rapidly compared with the effi-
ciency of the conventional level set methods. As a whole, in order to generate more efficient optimal solu-
tions less sensitive to the initial guess, some perturbations or modifications of the conventional level set
methods must be introduced.

In the present extended level set method, relatively simple modifications of the conventional level set meth-
ods are proposed to generate optimal designs insensitive to the initial guess. The choice of the timestep size s
and the total number of RBF knots N are determined by decreasing the energy functional J while remaining in
the feasible region, rather than by solving the Hamilton–Jacobi PDE accurately. This modification will lead to
an inaccurate solution to the standard Hamilton–Jacobi PDE, similar to those modifications of the Hamilton–
Jacobi PDE previously discussed [25,26,56]. The maximum principle [4] will not be strictly satisfied and there-
fore nucleation of new holes inside the material domain becomes possible. Hence, the final design can become
less strongly dependent on the initial guess and the computational efficiency in solving the optimization prob-
lem (38) can be improved, as demonstrated in the present numerical examples. It is well known that the con-
ventional level set methods can only solve the optimization problem (38) quite inefficiently [24] since the
convergence speed is usually slow and the probability to converge to a local minimum is high. In many situ-
ations, timestep sizes are not chosen to satisfy the accuracy requirements or to achieve a rapid convergence but
rather to satisfy the CFL condition for stability, resulting in a loss of computational efficiency. In the present
method, since the the timestep size s and the total number of RBF knots N are chosen to satisfy the optimi-
zation requirements only, both temporal and spatial discretizations are less severely restricted and thus a faster
convergence speed can be obtained. Without satisfying the CFL condition for stability explicitly, the present
method can still maintain a relatively smooth evolution of the level set function without reinitialization, as
aforementioned. Furthermore, since the generalized expansion coefficients a can be normalized without chang-
ing the zero location U(x) = 0, the magnitude of the level set function can be kept bounded and thus the direct
consequence of time stability problem caused by the present modifications can be circumvented and would
become negligible.

Hence, a practical implementation of the present extended level set method for the optimization problem
(38) is developed. The implicit level set function is used to handle significant topological changes readily, while
the disadvantages of conventional level set methods in solving a local optimization problem efficiently and
requiring a periodic reinitialization process are overcome. This implementation is finally applied to the clas-
sical shape and topology optimization problems to demonstrate its success in accuracy and efficiency.
4. Shape and topology optimization using the level set method

The classical shape and topology optimization problem is chosen as an application of the present extended
level set method. The proposed shape and topology optimization process operates on the implicit scalar level
set function U(x) defined in Eq. (1) and represented by the RBF implicit modeling in (22) and uses a steepest
gradient method to find the decent direction of the normal velocity for the minimization of an objective func-
tion J(U). The normal velocity at the front is naturally and smoothly extended to the whole design domain D

without using any additional PDE solving procedure.

4.1. Minimum compliance design

In the classical shape and topology optimization problems, the minimum compliance design has been
widely investigated by the popular topology optimization methods such as the homogenization method
[57] and the evolutionary structural optimization method [35]. It should be noted that, as an important
alternative approach to the homogenization method, the SIMP (solid isotropic microstructure with penal-
ization) method [58] originally introduced by Bendsøe [59], has been generally accepted in recent years
[55,60,61].

With a level set model as shown in Eq. (1), the standard notion [33] of a classical minimum compliance
design problem can be re-written as follows:
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Minimize
U

Jðu;UÞ ¼
Z

D
ðeðuÞÞTCeðuÞHð�UÞ dX

subject to : aðu; t;UÞ ¼ Lðt;UÞ; ujCD
¼ u0; 8t 2 U ;

V ðUÞ=V 0 ¼ f;

ð39Þ
where J(u,U) is the objective function, u the displacement field, e(u) the strain field, C the Hook elasticity ten-
sor, V(U) the material volume as defined in Eq. (5), V0 the design domain volume and f the prescribed volume
fraction. The linearly elastic equilibrium equation is written in its weak variational form in terms of the energy
bilinear form a(u,t,U) and the load linear form L(t,U) [33], with t denoting a virtual displacement field in the
space U of kinematically admissible displacement fields, and u0 the prescribed displacement on the admissible
Dirichlet boundary CD.

The Lagrange multiplier method can be used to solve the optimization problem (39) [11]. By setting the
constraint on the equilibrium state inactive, the Lagrangian Lðu;U; ‘Þ with a positive Lagrange multiplier ‘
can be given by
Lðu;U; ‘Þ ¼ Jðu;UÞ þ ‘GðUÞ; ð40Þ

where the constraint functional G(U) can be expressed as
GðUÞ ¼ V ðUÞ � fV 0 ¼ 0: ð41Þ

It should be noted that the displacement field u is also a function of U, i.e. u = u(U). According to the Kuhn–
Tucker condition of the optimization, the necessary condition for a minimizer is
DULðuðUÞ;U; ‘Þ ¼ 0; ð42Þ

where DULðuðUÞ;U; ‘Þ is the gradient of the Lagrangian with respect to U. Hence, both U and ‘ can be found
by solving Eqs. (41) and (42).

4.2. Shape derivatives

The gradient of the Lagrangian DULðuðUÞ;U; ‘Þ may be obtained in a number of different ways following
the well-known approach of Murat and Simon of shape diffeomorphism [62]. In the present study, the shape
sensitivity analysis presented by Allaire et al. [8] is adopted to derive the shape derivatives.

Usually, the boundary oD of the whole structural shape and topology design domain D can be decomposed
[8] as
oD ¼ oDD [ oDN [ oDH; ð43Þ

where oDD is the Dirichlet boundary, oDN the non-homogeneous Neumann boundary, and oDH the homo-
geneous Neumann boundary (traction free). To derive the shape derivatives from the classical shape sensitivity
analysis [62], it is assumed that the shape boundary oX of an admissible design X can satisfy the following
conditions:
oX ¼ CD [ CN; CD � oDD; CN ¼ oDN [ CH; ð44Þ

where CD is the admissible Dirichlet boundary, CN the Neumann boundary, and CH the homogeneous Neu-
mann boundary. Furthermore, it is assumed that the surface loads are design independent and applied only on
a fixed subset of the boundary CN and the Dirichlet boundary CD is with zero displacements. The whole trac-
tion free homogeneous Neumann boundary CH may be represented by the zero level set function. However, in
the initial designs the strain energy density can be too high at the traction free boundary near the loading
points at the non-homogeneous Neumann boundary or near the Dirichlet boundary due to the stress concen-
tration, which may generate an undesirable maximum normal velocity in the early evolution as later discussed.
Therefore, in the present shape and topology optimization, only part of the traction free homogeneous Neu-
mann boundary CM 2 CH is initially chosen to be optimized as the moving free boundary, which is represented
by the dynamic interface U(x) = 0 in the present level set model. It should also be noted that this handling will
not prevent the whole boundary from being optimized due to the optimal time propagation of the moving free
boundary.
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Based on local perturbations of the moving free boundary of an admissible design X [8] (continuous per-
turbations with respect to the Hausdorff distance [26]), the resulting shape derivative of the Lagrangian can be
written as
dL

dt
¼
Z

D
ð‘� eTCeÞdðUÞjrUjvn dX ð45Þ
which can be further simplified [37] as
dL

dt
¼
Z

CM

ð‘� eTCeÞvn ds; ð46Þ
where t is the artificial time, and vn the artificial normal velocity at the moving free boundary CM. Further-
more, the resulting shape derivative of the volume constraint functional G(U) (41) can be expressed as
dG
dt
¼
Z

CM

vn ds: ð47Þ
Hence, these shape derivatives can be obtained from a surface integration. In a level set model, only the nor-
mal velocity field vn is needed and thus it is unnecessary to perform an explicit surface integration. In the pres-
ent shape and topology optimization, choosing the normal velocity field vn is equivalent to choosing a descent
direction for the objective function, which can be easily implemented by using a steepest gradient method
[8,9,11].
4.3. Normal velocities

According to the shape derivative in Eq. (46), a descent direction of the normal velocity vn for the Lagrang-
ian can be obtained by simply identifying the normal velocity vn as
vn ¼ eTCe� ‘ ð48Þ

in which the normal velocity vn at the moving free boundary CM can be determined by the strain energy den-
sity and a Lagrange multiplier. Hence, the normal velocity field is linked with the objective function of the
present minimum compliance design problem and physics of the present problem is incorporated due to
the flexibility of a level set model in choosing the velocity function. Without remeshing, the strain energy den-
sity field can be accurately and efficiently obtained numerically by using the ‘‘ersatz material’’ approach [8], the
geometry projection method [63] or some extended finite element methods [23,64–66], though the standard fi-
nite element method without remeshing is not applicable due to the movement of the free boundary across the
elements. However, the calculation of the Lagrange multiplier ‘ is not so straightforward.

To find the variable Lagrange multiplier ‘, only several methods were available in the open literature, which
appear to be less effective. In the work of Allaire et al. [8], as well as of Wang and Wang [16], a fixed ‘ was used
during the evolution of the free boundary and thus the volume constraint cannot be satisfied and only an
unconstrained optimization can be performed. The possible applications may become quite limited since
the real-world optimization problems are usually constrained. In the work of Wang et al. [9], the variable
Lagrange multiplier was derived from an assumption that the material volume keeps constant during the evo-
lution such that its shape derivative defined in (47) vanishes. However, this handling may become even con-
ceptually problematic since the conventional level set methods cannot conserve the mass in the sense that no
mass is lost or gained [2,4] and thus the material volume will not be constant during the evolution. In fact,
significant fluctuations of the material volume can be observed in their numerical results [9]. In the work of
Osher and Santosa [11], the Lagrange multiplier was obtained based on a similar assumption that the total
material volume can be conserved, but the possible drift of the volume during the iteration was noticed
and a Newton’s method was used to put the iteration back to the feasible set. In the work of Wang and Wang
[23], the material volume was also assumed to be conservative to find the Lagrange multiplier, but a higher or
lower multiplier was used to push the volume back to the volume constraint during the evolution. All these
methods cannot guarantee that the volume constraint function converge and thus the final solutions may
become even infeasible.
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Hence, a better way to calculate the Lagrange multiplier is that the Lagrange multiplier is chosen to make
the volume constraint exactly satisfied at each iteration. In the present study, based on such a methodology, a
bi-sectioning algorithm is proposed to find the Lagrange multiplier ‘ to guarantee that the volume constraint
be exactly satisfied during the course of evolution.

4.4. Bi-sectioning algorithm

A bi-sectioning algorithm can be used to determine the value of the Lagrange multiplier ‘ to satisfy the vol-
ume constraint at each time step based on the fact that the volume constraint functional G(U) in (41) is a
monotonously decreasing function of the Lagrange multiplier ‘. By using the normal velocities defined in
(48), the shape derivative of the volume constraint functional G(U) in Eq. (47) can be re-written as
dG
dt
¼
Z

CM

ðeTCe� ‘Þ ds ð49Þ
from which it can be easily obtained that the G(U) decreases with a large value of ‘ and increases with a low
value of ‘. Hence, the bi-sectioning algorithm can be initialized by setting a lower ‘1 and an upper ‘2 bound for
the Lagrange multiplier. In the present numerical study, it is initially chosen that ‘1 = 0, which will cause a
maximum volume increase, and ‘2 = 105, which may generate a significant volume decrease since all of the
normal velocities may become negative due to the relatively small strain energy density and the free boundary
thus moves inwardly. The interval which bounds the Lagrange multiplier is halved and the Lagrange multi-
plier is given by
‘ ¼ ð‘1 þ ‘2Þ=2 ð50Þ

from which the normal velocities vn in (48) as well as the extension velocities, which will be discussed later, can
be determined and thus the generalized expansion coefficients a in (37) can be updated. Since the implicit level
set function U(x, t) in (24) and the material volume V(U) in (5) can also be determined, the value of the volume
constraint function G(U) in (41) will be finally obtained. Therefore, the interval which bounds the Lagrange
multiplier can be repeatedly halved until its size is less than the convergence criteria, similar to the conven-
tional bi-sectioning algorithm used in the popular element-based SIMP method [32]. According to our numer-
ical practice, this bi-sectioning algorithm is effective with a fast convergence speed.

By using this bi-sectioning algorithm, the material volume constraint can be exactly satisfied during the iter-
ation and thus the material volume can be constant during the evolution of the moving free boundary. Hence,
the present normal velocities may become a kind of mass conserving velocities and the present level set method
can be regarded as mass conservative.
4.5. Shape optimization

According to the present steepest gradient method, for the optimal design, we have
vn ¼ eTCe� ‘ ¼ 0 ð51Þ

which implies that the strain energy density is a constant everywhere along the optimal free boundary CM since
the Lagrange multiplier ‘ is time-dependent only. This is also a target pursued by the classical shape optimi-
zation methods based on a shape sensitivity analysis [62,67]. Hence, the present level set model can perform
not only the free boundary-based topology optimization but also the shape optimization.

In the classical shape optimization, a key concept is the ‘‘speed function’’ Vn of the optimality condition
associated with a small variation in the boundary shape in the normal direction n. In general, it is necessary
that
V nðxÞ ¼ 0 ð52Þ

everywhere on the design boundary of the optimal structure. Physically, this indicates that the mutual energy
form of the elastic structure reaches a constant value on the boundary [62]. In most shape optimization appli-
cations, a Lagrangian formulation of boundary propagation was used to achieve the optimality condition and
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obtain an optimal shape of the structure [62,67]. The moving boundary is usually discretized with a set of de-
sign variables directly controlling the exterior and interior boundaries. Only an explicit boundary representa-
tion method is used and the boundary changes can be accomplished only if the connectivity of the boundaries
does not change since there is a sever limitation that only a structure of a fixed topology can be optimized. In
the present level set-based optimization model, both shape and topology can be optimized simultaneously. The
whole design domain is implicitly represented by a level set function U(x) and the moving free boundary is
represented by the zero level sets, which may experience significant topological changes such as developing
sharp corners, breaking apart, merging together or even disappearing. Furthermore, topological changes in
a structure can be easily captured. Hence, the present level set-based optimization method can be more pow-
erful than the classical shape optimization methods.
4.6. Extension velocities

As aforementioned, the normal velocity vn defined at the free boundary must be extended, either to the
whole design domain D [8] or to a narrow band around the free boundary [4], in the level set methods.
The choice of an extension velocity method is crucial since it can directly influence the overall efficiency of
the level set method [16,23,68].

There are many approaches to constructing the extension velocity ve
nðxÞ in the literature. In the original

level set method introduced by Osher and Sethian [1], a natural construction of an extension velocity field
was obtained, in which a signed distance function was used as a level function. In many fluid simulations,
the fluid velocity was chosen as the extension velocity [69,70]. An approach using less physical quantity to
build an extension velocity field was developed by Sethian and Strain [71], in which a numerical simulation
of dendritic solidification with a jump condition across the interface was presented. When there is no physi-
cally meaningful choice available, the extension velocity field was suggested to be constructed by extrapolating
the velocity from the front by some researchers [72], which requires the location of the closest grid point. The
idea of letting the extension velocity be a constant along the curve normal to the interface is quite natural,
however, constructing this extension velocity in the whole domain requires quite considerable effort [2,17].
Hence, a fast extension method was proposed by Adalsteinsson and Sethian [73], which preserves the signed
distance in a narrow band around the zero level set curve by assuming the normal velocity be constant along
the normal. More recently, in structural topology optimization, the extension velocities were obtained by
extending the strain energy density at the free boundary to the whole design domain by Allaire et al. [8]. Since
the velocity and the normal may be not smooth at the front, another PDE solving procedure was introduced.
It should be noted that in these extension velocity methods a signed distance function was often used as the
level set function and therefore the level set function must be reinitialized periodically to preserve the signed
distance. Hence, a time-consuming PDE solving procedure [2] may be required and the accuracy and efficiency
of the level set methods may be deteriorated [2,46].

In the present study, a physically meaningful extension velocity method without the additional PDE solving
procedure is presented for structural shape and topology optimization. According to Eq. (48), a natural exten-
sion of the normal velocity vn at the free boundary can be obtained if the strain field e(u) is extended to the
entire design domain D by assuming e(u) = 0,u 2 (DnX). Nevertheless, this extension will introduce an appar-
ent discontinuity in the extension velocity at the free boundary since the strain field is not continuous across
the free boundary. To guarantee a smooth progress of the free boundary, this discontinuity should be elim-
inated. Hence, a linear smoothing filter is introduced in the narrowband region around the free boundary,
which is defined as
N ¼ fx 2 Rd jjUðxÞj 6 Dg; ð53Þ

where D is the bandwidth. The extension velocity ve

n in the narrowband is smoothed as bve
n by using a simple

linear filter (radially linear ‘hat’ kernel popular in the SIMP-based topology optimization [32,33]) to achieve
an excellent smoothing effect [23,61], which can be written as
bve

nðxÞ ¼ k�1ðxÞ
X

p2NðxÞ
wðkp� xkÞve

nðxÞ; ð54Þ
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where
wðkp� xkÞ ¼ rmin � kp� xk; ð55Þ
kðxÞ ¼

X
p2NðxÞ

wðkp� xkÞ ð56Þ
in which N(x) is the neighborhood of x 2 N in the filter window and rmin the window size. Hence, the overall
extension velocity is obtained as
ve
n ¼ ve

nðxÞ ¼
eTCe� ‘ 8x 2 Rd jUðxÞ < �D;bve

nðxÞ 8x 2 N;

�‘ 8x 2 Rd jUðxÞ > D:

8><>: ð57Þ
Using this extension velocity field ve
n, B(a) can be obtained from Eq. (35) at each time step and thus the gen-

eralized expansion coefficients a in (37) can be updated. The motion of the free boundary can be obtained by
using the updated implicit level set function U(x, t) in (24). This procedure should be repeated until the con-
vergence criteria have been reached.

Furthermore, the resulting extension velocities are physically meaningful since both the strain energy density
and the mass-conserving Lagrange multiplier are closely associated with physics and geometry. As illustrated in
the present numerical examples, the evolution of the level set function with this extension velocity field may
finally lead to the creation of new holes at the sites inside the material domain where materials are inefficiently
used, similar to the evolutionary structural optimization approach [35], the bubble method [74], and the topo-
logical gradient method [26]. This can be a significant improvement over the conventional level set methods,
which only allow limited topological changes by splitting or merging connected components [37].

5. Numerical examples and discussion

In this section, numerical examples in two dimensions are presented to illustrate the performance and suc-
cess of the present extended level set method for structural shape and topology optimization. Unless stated
otherwise, all the units are consistent and the following parameters are assumed as: the Young’s elasticity
modulus E = 1 for solid materials, E = 1 · 10�5 for void materials, and Poisson’s ratio m = 0.3. The implicit
level set function U(x) is initially chosen as a signed distanced function by using the present RBF modeling
from a set of given points and no extra efforts such as reinitialization are made to keep this property during
the optimization process.

For all examples, a fixed rectilinear mesh is specified over the entire design domain for finite element (FE)
analysis of the structures. The FE analysis is based on the bilinear rectangular elements and an ‘‘ersatz mate-
rial’’ approach, which is well-known in topology optimization that can be rigorously justified in some cases
[8,75]. In numerical practice of the ‘‘ersatz material’’ approach, material density is assumed to be piecewise
constant in each element and is adequately interpolated in those elements cut by the zero level set function
(the free boundary). It is also assumed that the knots of the RBFs are coincidental to the nodes of the recti-
linear mesh. Furthermore, D = 1 grid size for the bandwidth size, rmin = 1.2 grid size for the filter window size,
and c = 10�4 for the free shape parameter in the MQ RBFs (10). It should be noted that the choice of the free
shape parameter may affect the accuracy of the final optimization results and a more detailed study can be
found in the work of the authors [16]. The present algorithm is terminated when the relative difference between
two successive objective function values is less than 10�5 or when the given maximum number of iterations has
been reached. The topologies are given in black-and-white form based on the scalar value of the implicit func-
tion U(x), as defined in Eq. (1). All the CPU time is based on a desktop computer under the MATLAB envi-
ronment with an Intel Pentium IV processor of 3.00 GHz clock speed.
5.1. Short cantilever beam

The minimum compliance design problem of a short cantilever beam is shown in Fig. 1. The whole design
domain D is a rectangle of size 2 · 1 with a fixed boundary oD (zero displacement boundary condition) on the
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Fig. 1. Definition of the minimum compliance design problem of a short cantilever beam.
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left side and a unit vertical point load P = 1 applied at a fixed non-homogeneous Neumann boundary oDN,
the middle point of the right side. The specified material volume fraction is f = 0.5. The distribution of the
RBF knots is illustrative only. It should correspond to the nodes distribution of the underlying FE mesh
for structural analysis.

Fig. 2 displays the evolution of an optimal topology of the short cantilever beam with an initial design as
shown in Fig. 2(a) by using the present level set method with a 80 · 40 FE mesh and a time step size s = 10�4.
It can be seen that significant topological changes have been achieved and the final design as shown in Fig. 2(f)
is similar to those reported in the literature [8,23,25] using the conventional level set methods. Hence, optimal
topologies can also be obtained by using the present extended level set method, rather than by using the
upwind schemes in the conventional level set methods [2,4]. The evolution of the corresponding moving free
boundary CM is shown in Fig. 3, in which the free boundary is approximately depicted by piecewise lines and
(a) Initial design (b) Step 10

(c) Step 20 (d) Step 30

(e) Step 40 (f) Final solution

Fig. 2. Evolution of an optimal solution for the short cantilever beam.
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Fig. 3. Evolution of the moving free boundary of the short cantilever beam.
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the extension velocities at each knot are indicated by the arrows. According to the present mass-conserving
extension velocities, the moving free boundary can develop sharp corners, break apart, merge together and
disappear in an automatic way during the course of evolution. Although the maximum velocity is located
on the free boundary in the initial design, the location is rapidly shifted to the location inside the material
domain around the loading points due to the present steepest gradient optimization method and a stress con-
centration around the loading region. In the optimal solution, as shown in Fig. 4, the scalar normal velocities
at the free boundary become almost zero, which agrees well with the theoretical prediction that the normal
velocity is zero on the optimal boundary [8] and indicates that a shape optimization is also achieved.

Fig. 5 shows the convergence speed of the objective function and the volume function for the short canti-
lever beam. It can be seen that the compliance of the optimal solution is significantly better than that of the
initial design and the compliance converges in a fast and stable way due to the present level set-based optimi-
zation method. Furthermore, the equal volume constraint (V/V0 = 0.5) can almost be exactly satisfied during
the course of evolution, though the initial design possesses a higher material volume (V/V0 = 0.578) and is
thus infeasible. As aforementioned, in the present study this is achieved by choosing an appropriate Lagrange
multiplier using a bi-sectioning algorithm, rather than based on the problematic assumption that the material
volume can remain unchanged dxuring the evolution [9,11,16]. Hence, the optimal solutions can be guaranteed
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Fig. 4. Scalar extension velocity field (vn P 0) for an optimal solution of the short cantilever beam.
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Fig. 5. Convergence of the objective function and the volume for the short cantilever beam.
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to be feasible and the underlying level set method may become mass conservative to make the material volume
constant during the iterations. Furthermore, the conventional level set methods for shape and topology opti-
mization [8,9,11–13,16,23] may also become mass conservative by applying the present mass-conserving
velocities.

For the purpose of comparison, this shape and topology optimization problem is solved again by using a
conventional level set model in [20] and the present mass-conserving extension velocities. In the level set
model, a second-order ENO (essentially non-oscillatory) upwind scheme is used for the propagation of the
free boundary and a third-order reinitialization algorithm is adopted to minimize the numerical diffusion
around the location of the original interface [6], and an aggressive CFL number of 1 is used to drive a fast
convergence. Reinitialization as an auxiliary step is performed every 5 times of transport and the maximum
number of iterations is specified as 200. The final solutions are shown in Fig. 6. It can be seen that the final
topology is similar to the optimal topology shown in Fig. 2(f), however, shape optimization is not completed
since there is an apparent discrepancy between the free boundary shown in Fig. 6(a) and the zero scalar veloc-
ity curve shown in Fig. 6(b). It is thus suggested that the convergence of both the shape and the topology has
not been reached. The convergence speed of the objective function and the material volume is shown in Fig. 7.
As expected, the material volume shown in Fig. 7(b) is almost exactly constant during the iterations, different
from the conventional level set methods in the literature [8,9,11–13,16,23]. Furthermore, the objective function
decreases in a quite stable way, which justifies the use of an aggressive CFL number in this case, but it con-
verges significantly slower than using the present extended level set method. This is a typical drawback of a
CFL-dependent conventional level set model, as aforementioned. Hence, the present method may significantly
excel the conventional level set methods in computational efficiency for shape and topology optimization.

Nucleation of some new holes can be observed in Figs. 2(b) and (c), which suggests that the present level
set method has the capability of nucleation of new holes. To further demonstrate this capability, shape and
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Fig. 6. Final solutions for the short cantilever beam using a conventional level set method.
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Fig. 7. Convergence of the objective function and the volume for the short cantilever beam using a conventional level set method.
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topology optimization is performed again starting from a design without a hole. The initial design and the
final solution are shown in Fig. 8. It can be seen that although the initial design is without a hole, the final
solution can also be similar to the optimal solution with holes shown in Fig. 2(f) using an initial design with
holes. Hence, the initial design does not influence the final solution too significantly since the maximum prin-
ciple [4] is not obeyed rigorously and topological changes to create new holes are allowed for in the present
extended level set method. As a result, the present method is less sensitive to initialization than the conven-
tional level set methods [8,25]. Fig. 9 shows the convergence speed of the objective function and the material
volume function. Since the objective function decreases significantly with the time advancement in a stable
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Fig. 9. Convergence of the objective function and the volume for the short cantilever beam using an initial design without a hole.

(a) Initial design (b) Final solution

Fig. 8. Final solution for the short cantilever beam using an initial design without a hole.
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manner, the nucleation of new holes can be justified. Again, from Fig. 9(b) it can be seen that the material
volume constraint can be almost exactly satisfied during the iterations. Furthermore, shape and topology
optimization using an initial design with a material domain occupying the upper half of the design domain
is also performed and similar observations can be made, according to the final solution shown in Fig. 10
and the convergence speed shown in Fig. 11. In the conventional level set methods, the nucleation of new
holes is not allowed for and thus a bubble or topological gradient method has to be incorporated into the
level set methods, as shown in [25,26,74]. Since both the topological and shape derivatives are used in a mod-
ified level set method, it would be quite difficult to switch between them in an automatic way [25,26]. More-
over, it can be quite complicated for the topological derivative to handle surface functions [37]. In the present
extended level set method, the topological derivative is not used and the creation of new holes can be fulfilled
by using the shape derivative only.

Although the present extended level set method can satisfy the volume constraint at each iteration, it may
experience difficulties to handle an initial design quite far away from the feasible domain with a fixed volume
constraint. For example, if an initial design is with a much higher material volume fraction than the pre-spec-
ified volume constraint, to satisfy the volume constraint after a single step, too significant topological changes
may have to be experienced and quite unstable solutions may thus be produced. To deal with this situation, a
minor modification to the present mass-conserving Lagrange multiplier is developed by combining the present
method with the method in [16,23] using a fixed Lagrange multiplier to decrease the material volume. A neigh-
borhood of the feasible domain is pre-specified (for this example, a volume fraction range of [0.4,0.6] for the
required volume fraction 0.5 is used as the neighborhood). When the material volume falls inside this range,
the variable Lagrange multiplier is determined by the present bi-sectioning algorithm as aforementioned.
However, when the material volume falls outside this range, a fixed Lagrange multiplier (‘ = 20 for this exam-
ple) with a relatively large or small positive volume is used to drive the material volume towards the neigh-
borhood of the feasible domain [16,23]. This idea is here illustrated by using an initial design with a heavy
(a) Initial design (b) Final solution

Fig. 10. Final solution for the short cantilever beam using another initial design without a hole.
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Fig. 11. Convergence of the objective function and the volume for the short cantilever beam using another initial design without a hole.
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Fig. 12. Evolution of an optimal topology using an initial design with a central hole.
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material volume fraction of 0.9649 as shown in Fig. 12(a). The initial design, the intermediate results and the
final solution are shown in Fig. 12. It can be seen that smooth topological changes have been reached and a
final solution similar to the previous one can be achieved. Furthermore, it can be seen from Fig. 13 that con-
vergence of both the objective function and the volume constraint function from the initial infeasible domain
to the feasible domain (starting from step 25) are stable, though the initial design possesses a much lower com-
pliance value than the optimal solution due to its much higher material volume. Therefore, the infeasible initial
design quite far away from the feasible domain is driven towards the feasible domain successfully and the pres-
ent method with this modification can be initial design-independent.
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Fig. 13. Convergence of the objective function and the volume for the short cantilever beam using an initial design with a central hole.
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The initial designs do not affect the final design significantly in the present extended level set method, how-
ever, the computational efficiency may be greatly affected. Table 1 displays the effect of the initial designs on
the computation time. It can be seen that the present method converges fastest with an initial design with holes
and converges slowest with an initial design without a hole and quite different from the final design, since
topological changes can be more easily handled by decreasing the number of holes rather than by creating
new holes. This is consistent with the observations made in [25,26] and may justify the use of heavily perfo-
rated initial designs in [7,12,19].

5.2. Michell type structure

The present extended level set method is finally applied to the classical Michell type structure problem, in
which a theoretical Michell’s solution is available in the literature [34–36,76], as shown in Fig. 14(b). The
whole design domain D is a rectangle of size L · H, the two bottom corners have the pinned supports, and
a unit vertical point force P is applied at the middle point of the bottom side. As shown in Fig. 14(b), the the-
oretical optimum topology consists of two 45� arms extending from the supports towards an approximately
90� central fan section which extends upwards from the point of application of the force. In the present study,
it is assumed that L = 2, H = 1.2, P = 1, and a pre-specified material volume fraction f = 0.3. The domain D is
discretized with a fixed rectangular mesh of 80 · 48 and a timestep size of s = 10�3 is adopted.

A heavily perforated structure with a material volume fraction of 0.7023 as shown in Fig. 15(a) is chosen
to achieve a rapid convergence speed. The present extended level set method without further modifying the
Lagrange multiplier as just suggested is applied. The corresponding evolution history of the final shape and
topology is shown in Fig. 15. It can be seen that the final solution can be reached rapidly. Hence, the pres-
ent method without further modifying the Lagrange multiplier can be applicable to infeasible designs with
multiple holes, though the initial material volume fraction of 0.7023 is significantly larger than the required
volume fraction of 0.3 for this problem. For this case, using a problem-dependent fixed Lagrange multiplier,
which may cause mathematical complexity in determining its appropriate value, to drive the material vol-
ume towards the feasible domain is not needed. Furthermore, the final topology consisting of two arms and
a central fan section is quite similar to the theoretical optimum topology shown in Fig. 14(b) and therefore
the effectiveness and accuracy of the present method is again illustrated. The convergence of the objective
function and the volume constraint function is shown in Fig. 16. Although the objective function may
Table 1
Effect of initial designs for the short cantilever beam

Initial design Jmin Nit T0 (s)

Fig. 2(a) 60.0696 50 2.1964e + 003
Fig. 8(a) 60.9703 200 7.0858e + 003
Fig. 10(a) 60.4885 500 1.7589e + 004
Fig. 12(a) 60.1189 67 2.3940e + 003

Jmin: minimum compliance; Nit: total number of iterations; T0: total CPU time.
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Fig. 14. Optimal design problem for Michell type structures with fixed supports.
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Fig. 15. Evolution of an optimal solution for the Michell type structure.
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Fig. 16. Convergence of the objective function and the volume for Michell type structure.
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increase in the early iterations due to the large number of bars to be broken to satisfy the volume con-
straint, it finally converges in a smooth and stable way. Again, as expected, Fig. 16(b) displays that the vol-
ume constraint can be almost exactly satisfied during the course of evolution. It should also be noted that
the present method can be more powerful since it can also perform the classical shape optimization, as
shown in Fig. 17, in which the zero scalar velocity curve corresponds to the free boundary of the final solu-
tion shown in Fig. 15(f) almost exactly.
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6. Conclusions

An extended level set method for classical shape and topology optimization is proposed based on the
popular radial basis functions. The implicit level set function is approximated by using the RBF implicit
modeling with multiquadric splines. Because of the global smoothness of this representation, a high level
of accuracy and smoothness of the implicit function is achieved. Furthermore, the Hamilton–Jacobi PDE
is discretized into a mathematically more convenient coupled ODE system and the original time dependent
initial value problem becomes a relatively simple time-dependent interpolation problem. It turns out that a
relatively smooth level set evolution can be maintained without reinitialization due to the use of global sup-
port RBFs. A practical implementation of the present method is developed for solving a class of energy-
based optimization problems, in which inaccurate solution to the original Hamilton–Jacobi PDE may be
justified and nucleation of new holes inside the material domain is allowed for. As a result, the constraints
on the temporal and spatial discretizations can be significantly relaxed by satisfying the optimization
requirements only and the direct consequence of time stability problem can be circumvented due to the
globally smooth RBF implicit modeling. Hence, a rapid convergence to the final design insensitive to initial
guesses becomes possible.

The present extended level set method is applied to the classical shape and topology optimization. The pro-
posed shape and topology optimization process operates on the implicit level set function represented by the
RBF implicit modeling and uses a steepest gradient method and shape derivatives to find the decent direction
of the normal velocity for the minimization of an objective function. By using the present bi-sectioning algo-
rithm, the Lagrange multiplier can be accurately obtained and the present extended level set method can thus
be mass conservative. It is also highlighted that the classical shape optimization can be performed simulta-
neously. By using the global strain energy density field and a linear smoothing filter, the normal velocity at
the free boundary is naturally and smoothly extended to the whole design domain without using an additional
PDE solving procedure. This proposed method is implemented in the framework of shape and topological
optimum of minimum compliance design and its higher efficiency over the conventional level set methods is
illustrated. Numerical examples of 2D structures are chosen to show the success of the present method in accu-
racy, convergence speed and insensitivity to initial designs. Compared with the conventional level set methods,
the present method can either generate similar optimal designs rapidly without reinitialization or largely elim-
inate the dependency on initial designs due to its capability in nucleation of new holes inside the material
domain. It is suggested that the introduction of the radial basis functions into the conventional level set meth-
ods possesses promising potentials.
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